An Algebra for the Control of Stochastic Systems: Exercises in Linear Algebra
نویسنده
چکیده
A new algebraic framework is introduced based on stochastic matrices. Together with several new operators, the set of stochastic matrices is shown to constitute a vector space, an inner-product space, and an associative algebra. The new zero vector is the uniform probability distribution and linear addition is akin to statistical independence. This new stochastic algebra allows Markov chains and control problems to be reexamined in the familiar constructs of a vector space. A stochastic calculus furthermore allows Markov control problems to be linearized thus creating a connection to the classic linear time-invariant control theory.
منابع مشابه
A note on the new basis in the mod 2 Steenrod algebra
The Mod $2$ Steenrod algebra is a Hopf algebra that consists of the primary cohomology operations, denoted by $Sq^n$, between the cohomology groups with $mathbb{Z}_2$ coefficients of any topological space. Regarding to its vector space structure over $mathbb{Z}_2$, it has many base systems and some of the base systems can also be restricted to its sub algebras. On the contrary, in ...
متن کاملApplication of DJ method to Ito stochastic differential equations
This paper develops iterative method described by [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve Ito stochastic differential equations. The convergence of the method for Ito stochastic differential equations is assessed. To verify efficiency of method, some examples are ex...
متن کاملA computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations
A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...
متن کاملClassical wavelet systems over finite fields
This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...
متن کاملOn semi maximal filters in BL-algebras
In this paper, first we study the semi maximal filters in linear $BL$-algebras and we prove that any semi maximal filter is a primary filter. Then, we investigate the radical of semi maximal filters in $BL$-algebras. Moreover, we determine the relationship between this filters and other types of filters in $BL$-algebras and G"{o} del algebra. Specially, we prove that in a G"{o}del algebra, any ...
متن کامل